Analytical models of approximations for wave functions and energy dispersion in zigzag graphene nanoribbons

نویسندگان

  • Mahdi Moradinasab
  • Hamed Nematian
  • Mahdi Pourfath
  • Morteza Fathipour
  • Hans Kosina
چکیده

Related Articles Effect of in-situ oxygen on the electronic properties of graphene grown by carbon molecular beam epitaxy grown Appl. Phys. Lett. 100, 133107 (2012) Oxygen density dependent band gap of reduced graphene oxide J. Appl. Phys. 111, 054317 (2012) Electronic structures of graphane with vacancies and graphene adsorbed with fluorine atoms AIP Advances 2, 012173 (2012) Transport properties of hybrid graphene/graphane nanoribbons Appl. Phys. Lett. 100, 103109 (2012) Lateral in-plane coupling between graphene nanoribbons: A density functional study J. Appl. Phys. 111, 043714 (2012)

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spin-polarized transport through a zigzag-edge graphene flake embedded between two armchair nanoribbons electrodes

We study the coherent spin-polarized transport through a zigzag-edge graphene flake (ZGF), using Hubbard model in the nearest neighbor approximation within the framework of the Green function’s technique and Landauer formalism. The system considered consists of electrode/ (ZGF)/electrode, in which the electrodes are chosen to be armchair nanoribbons. The study was performed for two types of ele...

متن کامل

Electronic properties of hydrogenated porous Graphene based nanoribbons: A density functional theory study

The structural and electronic properties of the hydrogenated porous graphene nanoribbons were studied by using density functional theory calculations. The results show that the hydrogenated porous graphene nanoribbons are energetically stable. The effects of ribbon type and ribbon width on the electronic properties of these nanoribbons were investigated. It was found that both armchair and zigz...

متن کامل

Atomistic simulation and continuum modeling of graphene nanoribbons under uniaxial tension

Atomistic simulations are performed to study the nonlinear mechanical behavior of graphene nanoribbons under quasistatic uniaxial tension, emphasizing the effects of edge structures (armchair and zigzag, without and with hydrogen passivation) on elastic modulus and fracture strength. The numerical results are analyzed within a theoretical model of thermodynamics, which enables determination of ...

متن کامل

Effect of edge structures on elastic modulus and fracture of graphene nanoribbons under uniaxial tension

Qiang Lu and Rui Huang Department of Aerospace Engineering and Engineering Mechanics, University of Texas, Austin, Texas 78712, USA ABSTRACT Based on atomistic simulations, the nonlinear elastic properties of monolayer graphene nanoribbons under quasistatic uniaxial tension are predicted, emphasizing the effect of edge structures (armchair and zigzag, without and with hydrogen passivation). T...

متن کامل

بررسی خواص مغناطیسی ریزساختارهای نانومتری گرافینی و نانوروبان‌های گرافینی زیگزاگ‎

The discovery of graphene and its remarkable electronic and magnetic properties has initiated great research interest in this material. Furthermore, there are many derivatives in these graphene related materials among which graphene nanoribbons and graphene nanofragments are candidates for future carbon-based nanoelectronics and spintronics. Theoretical studies have shown that magnetism can ari...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012